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ABSTRACT: One of the great goals in polymer physics is to relate
the various macroscopic features of polymeric fluids with the
microscopic behavior of single chains. Here, we directly visualize the
conformational dynamics of individual semiflexible polymers in a
semidilute solution above the overlap concentration under shear.
We observe that the tumbling dynamics are significantly slowed
down, in marked contrast to the case of a dilute solution, due to
steric interactions with neighboring filaments. The observed
macroscopic shear thinning effect can be rationalized by a simple
model based on the single filament dynamics.

Polymeric liquids show very different rheological behaviors
dependent on their polymer/solvent ratio: In the dilute

regime, only solvent−solvent and polymer−solvent interactions
contribute to rheology and the solution behaves similar to a
pure solvent. Above the overlap concentration, interactions
between the polymers dominate the behavior of the fluid and it
becomes viscoelastic. The viscoelasticity increases with
increasing polymer concentration and reaches its maximum
within a melt. The individual configurational dynamics of
polymers in dilute solutions under shear have already been
elucidated. Single filament responses to interactions with the
solvent, such as stretching and tumbling, have been identified
both in experiments and in simulations.1−8 A recently
introduced microscopic setup based on a semiautomated
moving stage allowed the introduction of a quantitative
telescopic Brownian rod model, which fully accounts for the
individual filament dynamics in such a dilute regime.4 Yet how
the presence of polymers in the overlap regime influences the
dynamics of single filaments and how this in turn couples back
to the macroscopic flow behavior and viscosity remains
unresolved. Especially, relating the non-Newtonian flow
behavior of polymer solutions above the overlap concentration
to the microscopic dynamics of individual filaments has proven
to be difficult, mostly due to the lack of experimental insights
into the microscopic dynamics of the individual constituents.
Here, we directly visualize the configurational dynamics of

individual semiflexible polymers in the semidilute regime under
shear flow conditions (Figure 1). In this concentration regime,
the solution exhibits a shear thinning behavior. We present a
minimal model relating the microscopic behavior of single
chains to the macroscopic viscosity of the polymer solution.
Mixtures of labeled and unlabeled actin filaments above the
overlap concentration flow through microfluidic channels on a
semiautomatic moving stage. The configurational dynamics of
individual filaments are observed using fluorescence micros-

copy. We identify that the major effect of the entanglement on
the filament dynamics is the prolonged time filaments spend in
the extended configuration. Compared to the dilute regime,
tumbling events occur less often, yet the time the filament ends
need to reverse the direction is the same. In addition,
anomalous and aborted tumbling events occur (Figures 1b−
d). The determined angular probability distribution can directly
be used to recover the macroscopic viscosity because the stress
tensor including its shear component can be expressed, within
the framework of nonequilibrium thermodynamics,9−11 in
terms of anisotropic moments of the distribution function.
Such moments, also known as orientation tensors, fully
characterize the amount of flow-induced alignment of the
assumed uniaxial particles.
To visualize the single polymer dynamics in the semidilute

regime, a small amount of filaments which are fluorescently
labeled with AlexaFlour488-phalloidin is added to a 10 μM
solution of unlabeled actin. Actin is polydisperse with a
monoexponentially decreasing length distribution with a decay
length of 4.3 μm. A dilute reference solution consists of labeled
polymers (0.5 nM) and glycerol to match the viscosity of both
solutions at the observed shear rate. The polymeric liquids are
pumped through Polydimethylsiloxane (PDMS) microchannels
and the motion of single filaments is recorded with a CCD
camera using a semiautomated moving stage.4 As proposed in
ref 11, we evaluate the angle ϕ between the filaments’ end-to-
end-vectors and the flow direction of filaments with comparable
contour lengths of Lc ≈ 8 μm and subjected to a shear rate γ ̇ ≈
10 s−1 to statistically quantify the behavior of the polymers
(Figure 1).
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Semiflexible actin filaments show characteristic tumbling
behavior in shear flow. Two characteristic time scales can be
identified in the observed tumbling motion of the filaments: A
diffusive dominated time τdiff, in which the polymer is
predominantly in a stretched conformation aligned with the
flow, and an advection time τadv, during which the transport of
the filament ends results in an exchange of the polymer’s
direction. The critical angle ϕc separating the diffusive and the
advective dominated phases has been found as ϕc = (Dr/γ)̇

1/3 in
dilute solution,4 where Dr is the rotational diffusion coefficient
of the filament in the diffusive phase. For the dilute case, the
mean tumbling time of 237 recorded tumblings τt = τdiff + τadv is
found to be about 4 s for a set of comparable filaments, with Lc
≈ 8 μm at γ ̇ ≈ 10 s−1. The rotational diffusion of the filaments
can result in a configuration where bending forces from the
shear flow act on a filament end. Only motions with the
rotational direction of the shear flow lead to a deterministic
motion of the filament ends, resulting in the reversal of the
filament orientation. Thus, only two configurational motions
are possible: either the front end is turned back in the slower
moving shear plane or the rear end overtakes the filament by
the transport in the faster shear plane. The whole advective
phase is characterized by the U-turn configuration of the
filament, set by its bending modulus.4

In the semidilute regime, filament−filament interactions lead
to an increased tumbling time (Figure 2a). Moreover, we
observe aborted tumbling events (Figure 1c,d) where filaments
enter the advective phase, yet stop, and are turned back to their
initial orientation. Such events are observed in 12% of all
observed tumblings in the semidilute regime (196 counted
events), where an inclination of a filament end more than 90°
away from flow direction was used as a threshold for entering

the advective phase. Additionally, we observe tumblings
contradictory to the direction conditioned by the velocity
gradient, i.e. the end in the slower fluid region overtakes the
other (Figure 1b). As both the aborted and the “anomalous”
tumblings only occur in semidilute polymeric solutions, while
absent in the dilute regime,4 they must be due to filament−
filament interactions. By entanglement forces from different
shear planes are readily transferred to a tumbling filament and
can directly lead to a reverse direction of the motion in the
advective phase. While the aborted tumbling can be readily
rationalized by a two-polymer interaction (Figure 3), a
complete reverse tumbling can only be mediated by multiple
polymer interactions.
To quantify the effects of these interactions on the dynamics,

we compared the times spent in the advective and diffusive
phase in the semidilute and in the dilute reference solution. As
the critical angle ϕc represents the point where the rotational
diffusion of the filament is equally strong as the advective drift,4

ϕc sets no distinct border to experimentally evaluate the
advective and diffusive times. Therefore, we use a threshold
angle for the orientation with respect to the flow direction of
25° > ϕc well above the critical angle to evaluate a core
“advective time” τadv′ for the disaligned advective phase and a
“waiting time” τw, including the entire diffusive dominated
phase for the flow-aligned phase at lower angles. Figure 2c,d
show the distribution of advection and waiting times for the
dilute reference solution (blue, 36 tumblings) and the
semidilute solution (red, 37 tumblings). Hereby, anomalous
tumblings have not been evaluated; aborted tumblings were
evaluated as prolonged waiting time. For the conditions studied
here, anomalous tumblings occurred only in 3% of all observed
events and do not significantly alter the observed characteristics
of advective and waiting times in the semidilute case.
The distribution of the observed advection times is almost

identical for both the dilute and the semidilute regime (Figure
2d), so that the advective phase is not significantly affected by
the presence of the surrounding filaments unless an anomalous
or interrupted tumbling is induced. Yet the distribution of the
waiting times is significantly broadened and the average waiting
time is shifted by a factor of 2 (Figure 2c). The prolonged
diffusive times are due to the high density of surrounding
filaments, which presumably prevent the filaments to enter the
advective phase by steric hindrance. In addition, the aborted
tumblings contribute directly to the prolonged waiting times.
The prolonged waiting time due to the steric hindrance of

the surrounding filaments expresses itself best in the slimmer
angular distribution of the orientational vector for the
semidilute solution (Figure 2b). Consistent to other
literature10,12 where a 10× higher rotational relaxation time
for semidilute DNA compared to the dilute case was reported,
we describe this effect with an effective lower rotational
diffusion coefficient. The large variation in the waiting time
distribution in the semidilute solution can be attributed to the
complex dynamics induced by the intermolecular interactions.
Based on the microscopically determined orientational

distribution, we propose a simple model with which we
compute directly the viscosity of our polymeric solution from
the recorded single filament dynamics. This is especially
challenging because actin is polydisperse with an exponentially
decreasing length distribution. As a starting point, we take the
measured probability distribution of the orientational angle of
recorded semidilute filaments with a mean length of Lc* = 8 μm
and mean shear rate of γ ̇ = 10 s−1. The stationary distribution

Figure 1. From top to bottom: Successive images of four filaments in a
semidilute solution subjected to shear flow. The contour lengths of the
filaments are (a) Lc = 9.0, (b) 11.5, (c) 8.2, and (d) 8.1 μm and the
shear rates are (a) γ ̇ = 10.9, (b) 4.3, (c) 8.0, and (d) 12.0 s−1. The time
between two subsequent images is (a) 242, (b) 2046, (c) 428, and (d)
186 ms. Due to the applied velocity gradient, shown schematically with
green arrows at the bottom right, the filament’s ends overtake each
other. Normally, a chain’s end located in the region with faster fluid
velocity moves to the front, as can be seen in (a). In a semidilute
solution, we also observe that the end in the slower region overtakes
the faster one (b). In addition to these “anomalous” tumblings, some
filaments eventually start tumbling, stop, and are then drawn back to
their initial orientation. Such aborted tumblings are shown in (c) and
(d). These two phenomena must be due to interactions with other
filaments from the bulk (scale bar = 10 μm).
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function contains partial information about the dynamics of the
orientation angle. Following ref 4, the temporal evolution of the
end-to-end vector u of a short actin filament subjected to shear
is well captured by the one of a Brownian rigid rod, whose
deterministic motion is given by u̇ = (1 − uu) · κ · u,9,10,13

where κ = (∇v)† denotes the transposed velocity gradient

tensor. Introducing polar coordinates, u = (cos ϕ, sin ϕ), the
deterministic part of motion becomes ϕ̇(ϕ) = γṡin2(ϕ) in the
case of planar shear. The additional diffusive, or stochastic part
of motion is most conveniently captured by formulating a
Fokker−Planck (FP) equation for the orientational distribution
function p(ϕ),

ϕ
ϕ ϕ

∂
∂

= −
∂ ̇

∂
+
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∂
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2
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where the orientational diffusion coefficient Dr determines the
strength of stochastic contribution. In the absence of flow, the
diffusive part is responsible for the relaxation toward
equilibrium, where p(ϕ) is a constant. In the presence of
steady shear flow, eq 1 has a stationary solution, ∂pstat/∂t = 0,
that is obtained by first integrating eq 1 over ϕ. The resulting
differential equation reads −Dr

−1ϕ̇pstat + dpstat/dϕ + C = 0 with
an integration constant C that is not needed here but
determined by the normalization condition ∫ p(ϕ)dϕ = 1.
With the abbreviation ψ(α) = exp[Dr

−1∫ 0
αϕ̇dϕ] the stationary

FP equation is solved by pstat(ϕ) ∼ ψ(ϕ)∫ −ϕ
π−ϕψ(α)dα, or

Figure 2. (a) Time course of the orientational angle of the filaments end-to-end vector. The distinct steps show tumbling events whereas the
plateaus indicate alignment with the flow. In blue: Filament of length Lc = 8.3 μm in the dilute regime at shear rate 5.0 s−1. In red: Filament with Lc =
9.4 μm in the semidilute regime at shear rate 5.5 s−1. Despite the similar conditions, the dynamics of the filament in the more concentrated regime
are significantly slower. The step backward at 30 s shows an anomalous tumbling event. (b) Cumulative distribution for the orientational angle of
multiple comparable filaments at shear rate γ ̇ ≈ 10 s−1 and contour length Lc ≈ 8 μm, in the dilute (blue) and semidilute (red) regime. The angular
distribution of the semidilute polymers is slimmer and shifted toward the center, consistent with less tumbling and more alignment with the flow. (c,
d) Time distributions with comparable lengths and shear rates (Lc ≈ 8 μm, γ ̇ ≈ 10 s−1) in the dilute (blue) and semidilute (red) regime, split at an
orientational angle of 25°. Waiting times τw (c) for angles lower than 25° with respect to flow direction, advection times τadv′ (d) for higher angles.
While the distributions of the advection times appear similar, the waiting times in the semidilute regime have a higher mean value and a much
broader variation.

Figure 3. Polymers with their centers of mass in different shear planes
can exert forces on each other via entanglements. An aborted tumbling
can be caused by an entanglement of two polymers performing their
typical U-turn runs in the advective phase. The light blue curve
illustrates the contour of a labeled filament (frame taken from the time
series in Figure 1d), the red curve represents a possible conformation
of an entangled, invisible nonlabeled filament. The arrows indicate the
opposing directions of the polymers’ center of mass movement.
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equally and numerically more convenient, especially for large γ/̇
Dr by

14

∫ϕ γ χ χ χ ϕ χ∼ ̇ − −
π ⎡

⎣⎢
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⎦⎥p

D
( ) exp

2
{ sin cos( 2 )} dstat 0 r (2)

where χ is an integration variable. We can now directly compare
the measured distributions for the dilute and semidilute
solutions depicted in Figure 2b with eq 2. The presented
approach is motivated by the perception that semiflexible
filaments in shear can be described as rods with an effective
smaller length.4 Behind this is the idea that a bendable filament
will preferably have an end-to-end-distance below its contour
length and will thus show faster dynamics than a rod with the
same length. As a result of the comparison, we obtain an
effective diffusion coefficient Dr*  Dr(Lc*) for the filaments in
the semidilute regime which is about four times lower than in
the dilute reference solution with the same viscosity. Employing
a known4 approximate expression for Dr(Lc) for semiflexible
chains, Dr(Lc) ∼ Drod(Lc/Req)

2, where Drod ∼ Lc
−3 is the

orientational diffusion coefficient of an infinitely thin rod and
thus insensitive to the flexibility of the filament, and Req an
effective equilibrium extension of the semiflexible chain, we can
eliminate the prefactors and calculate the effective diffusion
coefficient for arbitrary lengths via
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Here, Req
2  1/2[(Ree

eq)2 + 12Seq
2 ], involving the equilibrium

end-to-end distance Ree
eq and gyration radius Seq of the

semiflexible chain, is known analytically13,15 in terms of Lc
and the persistence length of an actin filament, Lp ≈ 16 μm.4

Although this relation holds strictly true only for the dilute case,
it turns out that all Lc-dependent corrections suggested for
semidilute regimes10,16 vanish for a polydisperse case.
With the stationary distribution pstat(ϕ) for all Lc at hand and

taking into account polydispersity, all moments (orientation
tensors) are readily calculated numerically. The contribution of
a Brownian rod to the macroscopic stress tensor follows from a

Kramers-Kirkwood “virial expression” that is of the form of an
average over “force” times “distance”.9,10 For simplicity, we
assume that the contribution of a semiflexible filament to the
stress tensor is equivalent to that of a Brownian rod with a
smaller effective length (eq 3). That is, we employ a stochastic
single filament theory where stress and orientation are coupled,
and where reverse tumblings could in principle occur only due
to thermal motion. Individual collisions with surrounding
filaments, that would potentially lead to a positive viscosity
contribution, are not captured by such an approach.
Accordingly, for the shear component of the stress tensor
and the related shear viscosity η, we arrive at
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where ν and ηs denote the actin concentration and solvent
viscosity, respectively, and where the normalized weight λ−1

exp(−Lc/λ) takes into account the exponentially decreasing
length distribution with decay length λ = 4.3 μm. The
concentration of polymers ν we estimate from the concen-
tration of monomers (cmon = 10 μM) via ν = cmonδ/λ, where δ =
2.77 nm is the length gain of the filament per monomer. The
solvent viscosity is ηs = 8 mPas at T = 293 K. The first
contribution in eq 4 is known as stress-optic rule,9,13 that is, a
proportionality between stress and segment orientation tensors
that is relevant for the determination of viscoelastic properties
of flexible polymers in solutions and melts by means of
birefringence measurements,17 while the second originates from
the constraint of constant contour length that comes together
with a nonaffine motion of segments. This latter contribution
tends to dominate at the large Weissenberg numbers ∼ γ/̇2Dr
under study: the average Weissenberg number Wi for the

Figure 4. (a) Contribution of single polymers to viscosity increases with increasing contour length (blue). Multiplied with the monoexponential
length distribution (red), we obtain the total contribution from all polymers (green) that exhibits a maximum at 8.3 μm. All three curves come with
arbitrary units and are scaled to match unity at their maxima. (b) Broken lines show the rheologically measured viscosities of our dilute (blue) and
semidilute (red) actin solutions. The background viscosity of the semidilute actin solution is 8 mPas (not shown). The viscosity of the dilute solution
was increased by adding glycerol to match with the semidilute one at a shear rate of around 10 s−1. Black squares show the values for the semidilute
case, calculated via eq 4 upon using the measured stationary angular distribution, pstat(ϕ) in eqs 2 and 3.
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evaluated Lc ≈ 8 μm filaments at shear rate γ ̇ ≈ 10 s−1 in the
semidilute solution is Wi = γ/̇2Dr* ≈ 1.3 × 103.
Figure 4 shows how the different lengths contribute to the

viscosity of the liquid. The longer an individual filament, the
higher its contribution to viscosity. As there are less long
filaments than short ones, the total contribution to viscosity by
filament length is seen to exhibit a maximum at about 8.3 μm.
With these relatively simple assumptions we do not only obtain
quite good agreement with the measured viscosity value at the
evaluated shear rate, 34.6 mPas compared to 21 mPas via eq 4,
but we can also estimate the viscosity at the remaining shear
rates (Figure 4b). The occurrence and also the strength of the
shear thinning are qualitatively reproduced by the theory and
are modeled by the shear rate dependence of pstat, which is due
to the increasing flow-alignment of filaments with increasing
rate. Note that, by assuming a rigid-rod conformation for the
calculation of eq 4, we neglected a second contribution to the
shear-thinning: The strongly bent U-turn conformation
observed for the semiflexible filaments during the advective
motion (Figure 1) further reduces the dissipation between the
filament and the solvent. This might explain, why the
experimentally determined viscosity in Figure 4b is lower
than the theoretical viscosity calculated with a rigid-rod
conformation. For concentrations exceeding the semidilute
regime, a mean field approach outlined in ref 18 for nonlinear
elastic dumbbells could eventually be extended to semiflexible
filaments to capture a nonlinear effect of concentration on flow
alignment.
In summary, the direct observation of the configurational

dynamics of individual filaments in a semidilute polymer
solution enabled us to directly relate the orientational
distribution to the macroscopic shear thinning behavior. The
surprisingly occurring anomalous, collision-induced tumbling
events seem to have only a minor effect on the macroscopic
flow properties due to their rare occurrence. This contribution
may change for more complex fluids or other solvent
conditions, where stronger interactions between the constitu-
ents occur. Despite its simplicity, the presented model captures
surprisingly well the macroscopic behavior and this using only
the directly determined parameters, without any free-fit
parameters. This is the starting point to also include the effect
of the U-turn conformation and thermal bending fluctuations
or even more complex dynamics, as observed for flexible
polymers. The introduced experimental and theoretical
approach sets the basis for a better understanding of complex
rheological behavior of ubiquitous polymeric liquids.
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